
LLNL-TR-412434

Progress report for FACETS (Framework
Application for Core-Edge Transport
Simulations)

T. G. W. Epperly

April 22, 2009



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Progress report for 

FACETS (Framework Application for Core-Edge Transport Simulations) 

T. G. W. Epperly, CS SAP Principal Investigator 

Lawrence Livermore National Laboratory  

April 20, 2008 

(DOE Contract DE-AC52-07NA27344) 

1. Introduction 

This role of this computer science SAP is to facilitate FACETS design and development 

by contributing CCA component technology and new application-specific technology. 

From a software perspective, the FACETS project is a very complex project. It is a 

combination of legacy software written in Fortran, Python, and C++ by various coding 

groups along with new software modules being written from scratch. The FACETS team 

is spread among 11 organizations and is geographically distributed from coast to coast. 

The fusion physics modules to be incorporated vary in terms of the model dimensions, 

typical time scale, and type of interactions with other components. 

Because FACETS is a complex project, it requires a component-based framework to 

facilitate the definition and composition of scientific applications from a suite of 

available fusion physics components. Component architectures have proven themselves 

in the business world and more recently in the scientific computing world. The CS SAP 

contributes fundamental tools like Babel to the FACETS framework and helps develop 

application-specific interfaces appropriate for the fusion physics modules. 

2. Project Funding, Initial Scope, and Changes 

The Center for Applied Scientific Computing at Lawrence Livermore National 

Laboratory receives $200,000 annually in funding to support 0.4 FTEs. The initial 

milestones from the initial proposal for FY08 included: 

 Define basic FACETS software architecture 

 Define component configuration, serialization, and deserialization interfaces to 

allow startup, initialization, and centralized checkpointing. 

 Prototype simplified CCA compliant framework to allow initial coupling of core 

and edge models 

 Prototype framework parallel communication management 

The milestones from the initial for FY09 included: 

 Define core & edge component interfaces with ports to allow connections 

between them 

 Link component interfaces to core and edge codes 

 Demonstrate core and edge components running in framework 



 Link models using parallel coupling technology from other project participants 

 Assist in linking physics components to TOPS solver components 

 Assist in porting framework to required high-performance platforms. 

For the most part, the project has proceeded according to our initial plans. We succeeded 

in defining the initial architecture and component interfaces. We implemented the initial 

framework and succeeded in getting a coupled core edge simulation running inside 

FACETS. Other team members have succeeded in linking Uedge with a TOPS solver, 

Petsc. 

The framework is designed to manage parallel physics components, and it can run 

parallel models. We have not yet needed to incorporate Larson’s model coupling toolkit 

because the interactions between models have not yet required that level of 

sophistication. 

I have spent more time than expected working on incorporating Uedge into the 

framework and less time working on framework implementation and design. Tech-X 

Corporation has lead the framework design and implementation, and I have reviewed it 

and suggested modifications to the design. We have not focused on making FACETS into 

a CCA compliant rather we have focused on leveraging the parts of the CCA that bring 

the best value to FACETS. 

3. Packaging Uedge as a FACETS component 

In the first half of the FACETS project, much of my work has focused on connecting 

Uedge to the FACETS framework. Connecting Uedge to the FACETS framework turned 

out to be more challenging than initially estimated due to its commitment to using a 

scripting language front end. Because of the challenge, we developed a two-phase 

approach. The first phase was designed to get Uedge up and running quickly inside the 

FACETS framework, and the second phase was designed to produce a faster interface 

that did not depend on a scripting language engine. 

Uedge defines a scripting language interface using .v files. The .v files are the input 

language to a scripting language called Basis and a Python-wrapping tool called Forthon. 

In the first phase, the approach was to generate a Python-wrapped Uedge using Forthon 

and then to wrap that version of Uedge with Babel to provide the C++ interface required 

by FACETS. This work required writing the FACETS interface using Babel’s Scientific 

Interface Definition Language (SIDL), making a build system to generate and build the 

Babel-generated glue code, and writing the code to link the Babel-generated code to 

Uedge. This approach allowed the FACETS to produce early results from a couple core-

edge fusion reactor simulation. 

The second phase began late in the first year and has carried on through the present. In 

this approach, we created an extension to Forthon that generates Babel interfaces for 

Uedge directly from the .v files. These Babel-based interfaces connect the FACETS 



framework in C++ to the Uedge physics module in Fortran. The purpose of this approach 

was to remove Uedge’s dependence on a scripting language engine and to facilitate 

having a statically linked FACETS executable (i.e., no dependence on shared or 

dynamically loadable libraries). The trend in LCF platforms is to have simple compute 

nodes with stripped down operating systems, so having a static executable is a 

requirement for some LCF machines. 

Generating a Python-free version of Uedge proved to be very challenging due to Uedge’s 

reliance on Python and 3
rd

 party Python libraries. For example, the checkpoint/restore 

features in Uedge had to be rewritten in Fortran. A new build system had to be written to 

compile Uedge without using Forthon. Our approach allows the Uedge team to support 

FACETS without introducing any new development files because we reuse their existing 

interface specification for Basis & Forthon. 

The Uedge scripting interface is relatively large involving nearly 200 functions and 

subroutines and roughly 3000 variables and parameters. To support the FACETS physics 

interface and to provide Uedge users the access to which they are accustomed, the direct 

Babel interface needed to provide access by name to all the 3000 variables and 

parameters. It took several development/test iterations to generate an efficient, buildable, 

moderately sized interface. 

4. Other Accomplishments 

The other accomplishments focus on general framework contributions, an initial parallel-

load balancing exercise, and porting FACETS to LCF machines. Through discussions 

and teleconferences, I have contributed to the FACETS framework design, and I have 

written the interface specification in SIDL for components being connected using Babel. 

I also lead a team exercise to evaluate the FACETS load-balancing challenges. There are 

different physics modules available to model core and edge physics, and each has 

different computational requirements and scalability properties. By considering the 

computation requirements and scalability of each potential algorithm, we were able to 

recommend models that are roughly load balanced with respect to each other. This 

exercise indicated that the wall model is the least computationally intensive, so it is 

unlikely to ever be the computational bottleneck.  

Lastly, I have worked closely with team members from Tech-X Corporation to get 

FACETS building and running on clusters and LCF machines. This involved getting 

Babel to install on Franklin, Bassi, and Jacquard at NERSC. Porting to LCF machines is 

always a challenge because each machine does things in a slightly different way which 

requires modifications to the configuration and build system. In addition, we did lots of 

team debugging to get the statically linked Uedge building and running on clusters.  


